Recitation 5. April 6

Focus: linear transformations, change of basis, determinants

A linear transformation is a function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that for any $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$, we have:

$$
\phi(\boldsymbol{v}+\boldsymbol{w})=\phi(\boldsymbol{v})+\phi(\boldsymbol{w}) \quad \text { and } \quad \phi(\alpha \boldsymbol{v})=\alpha \phi(\boldsymbol{v})
$$

A linear transformation ϕ can be expressed as a matrix B, with respect to given bases $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ of \mathbb{R}^{n} and $\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}\right\}$ of \mathbb{R}^{m} : the entry $b_{i j}$ on the i-th row and j-th column of B are such that:

$$
\phi\left(x_{1} \boldsymbol{v}_{1}+\ldots+x_{n} \boldsymbol{v}_{n}\right)=\left(b_{11} x_{1}+\ldots+b_{1 n} x_{n}\right) \boldsymbol{w}_{1}+\ldots\left(b_{m 1} x_{1}+\ldots+b_{m n} x_{n}\right) \boldsymbol{w}_{m}
$$

Changing the bases $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ and $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}$ will mean different coefficients $b_{i j}$, and hence a different matrix B, for one and the same function ϕ. The general rule is the change of basis formula:

$$
B=W^{-1} A V
$$

where $V=\left[\boldsymbol{v}_{1}|\ldots| \boldsymbol{v}_{n}\right]$, $W=\left[\boldsymbol{w}_{1}|\ldots| \boldsymbol{w}_{n}\right]$, and A is the matrix which represents ϕ in the standard basis:

$$
\phi(\boldsymbol{v})=A \boldsymbol{v} \quad \Leftrightarrow \quad \phi\left(x_{1} \boldsymbol{e}_{1}+\ldots+x_{n} \boldsymbol{e}_{n}\right)=\left(a_{11} x_{1}+\ldots+a_{1 n} x_{n}\right) \boldsymbol{e}_{1}+\ldots\left(a_{m 1} x_{1}+\ldots+a_{m n} x_{n}\right) \boldsymbol{e}_{m}
$$

We note that if $\phi(\boldsymbol{v})=A \boldsymbol{v}$ and $\psi(\boldsymbol{v})=B \boldsymbol{v}$, then $\phi \circ \psi(\boldsymbol{v})=(A B) \boldsymbol{v}$. Moreover, $\phi^{-1}(\boldsymbol{v})=A^{-1} \boldsymbol{v}$, assuming the linear transformation ϕ has an inverse, which is equivalent to A being invertible.

Given a square matrix A, its determinant (denoted by $\operatorname{det} A$) is the factor by which the linear transformation $\phi(\boldsymbol{v})=A \boldsymbol{v}$ scales volumes of regions in \mathbb{R}^{n}. It satisfies the property that:

$$
\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)
$$

A computationally efficient way to compute the determinant is to put A in row echelon form, and set:

$$
\operatorname{det} A=(-1)^{\#} \text { (product of pivots) }
$$

where $\#$ is the number of row exchanges that you need to do as you put A in row echelon form. Note the identities:

$$
\operatorname{det} A^{T}=\operatorname{det} A \quad \operatorname{det} A^{-1}=\frac{1}{\operatorname{det} A} \quad \operatorname{det}(\lambda A)=\lambda^{n} \operatorname{det} A
$$

for an $n \times n$ matrix A.

1. Recall that the linear transformation "counter-clockwise rotation by an angle α " is represented in the standard basis of \mathbb{R}^{2} by the matrix:

$$
\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]
$$

If you compose a rotation by angle α with a rotation by angle β, what do you get geometrically? What is the matrix that represents this composition? Can you use this to get formulas for $\cos (\alpha+\beta)$ and $\sin (\alpha+\beta)$?

Solution: The composition should be rotation by an angle $\alpha+\beta$, which is represented by the matrix:

$$
\left[\begin{array}{cc}
\cos (\alpha+\beta) & -\sin (\alpha+\beta) \\
\sin (\alpha+\beta) & \cos (\alpha+\beta)
\end{array}\right]
$$

On the other hand, the matrix representing the composition should be:

$$
\left[\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right]\left[\begin{array}{cc}
\cos \beta & -\sin \beta \\
\sin \beta & \cos \beta
\end{array}\right]
$$

Setting the two matrices above equal to each other gives us the angle sum formulas:

$$
\begin{aligned}
& \cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \\
& \sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
\end{aligned}
$$

2. Determine whether the following maps $\phi_{a}, \phi_{b}, \phi_{c}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ are linear. If so, find a matrix representation of the map in terms of the standard basis of \mathbb{R}^{3}, and then find a matrix representation in terms of the basis:

$$
\boldsymbol{v}_{1}=\boldsymbol{w}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \quad \boldsymbol{v}_{2}=\boldsymbol{w}_{2}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right], \quad \boldsymbol{v}_{3}=\boldsymbol{w}_{3}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

(a) $\phi_{a}\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x+y+z \\ x^{2}+y^{2}+z^{2} \\ 0\end{array}\right]$.
(b) $\phi_{b}(\boldsymbol{v})=(\boldsymbol{a} \cdot \boldsymbol{v}) \boldsymbol{a}$, where $\boldsymbol{a}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right] \in \mathbb{R}^{3}$.
(c) $\phi_{c}\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x-y-z \\ x+2 y \\ y-3 z\end{array}\right]$.

Solution: (a) ϕ_{a} is not linear, as $\phi_{a}\left(\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 4 \\ 0\end{array}\right] \neq\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]=2 \phi_{a}\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)$.
(b) ϕ_{b} is linear. Indeed, for any $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{3}$ and $\alpha, \beta \in \mathbb{R}$, we have

$$
\psi(\alpha \boldsymbol{v}+\beta \boldsymbol{w})=(\boldsymbol{a} \cdot(\alpha \boldsymbol{v}+\beta \boldsymbol{w})) \boldsymbol{a}=(\alpha(\boldsymbol{a} \cdot \boldsymbol{v})+\beta(\boldsymbol{a} \cdot \boldsymbol{w})) \boldsymbol{a}=\alpha(\boldsymbol{a} \cdot \boldsymbol{v}) \boldsymbol{a}+\beta(\boldsymbol{a} \cdot \boldsymbol{w}) \boldsymbol{a}=\alpha \phi(\boldsymbol{v})+\beta \phi(\boldsymbol{w}) .
$$

In terms of the standard basis, the matrix representation is

$$
X=\boldsymbol{a} \boldsymbol{a}^{T}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

In terms of the basis $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$, let us form the matrix:

$$
V=\left[\boldsymbol{v}_{1}\left|\boldsymbol{v}_{2}\right| \boldsymbol{v}_{3}\right]=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

One can compute (e.g. by Gauss-Jordan elimination) that:

$$
A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right]
$$

The change of basis formula tells us that the linear transformation ϕ_{b} is represented by the following matrix in the new basis $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$:

$$
V^{-1} X V=\frac{1}{4}\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

In other words, for any numbers x_{1}, x_{2}, x_{3}, we have:

$$
\phi_{b}\left(x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{2}+x_{3} \boldsymbol{v}_{3}\right)=\frac{\left(x_{2}+x_{3}\right)\left(\boldsymbol{v}_{2}+\boldsymbol{v}_{3}\right)}{2} \Leftrightarrow\left(\boldsymbol{a} \cdot\left[\begin{array}{l}
x_{1}+x_{3} \\
x_{2}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]\right) \boldsymbol{a}=\frac{x_{2}+x_{3}}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

The formula on the right is easy to check explicitly.
(c) ϕ_{c} is linear, as:

$$
\phi_{c}\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 2 & 0 \\
0 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

so by the linearity of matrix multiplication ϕ_{c} is linear. By the change of basis formula, the matrix representing ϕ_{c} in the new basis $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}$ is:
$A^{-1} Y A=\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & -3\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 0 \\ -1 & 2 & 1 \\ -1 & 4 & -3\end{array}\right]=\left[\begin{array}{ccc}2 & -3 & 1 \\ 1 & -1 & 2 \\ 0 & 3 & -1\end{array}\right]$.
In other words, for any numbers x_{1}, x_{2}, x_{3} we have:

$$
\phi_{c}\left(x_{1} \boldsymbol{v}_{1}+x_{2} \boldsymbol{v}_{3}+x_{3} \boldsymbol{v}_{3}\right)=\left(2 x_{1}-3 x_{2}+x_{3}\right) \boldsymbol{v}_{1}+\left(x_{1}-x_{2}+2 x_{3}\right) \boldsymbol{v}_{2}+\left(3 x_{2}-x_{3}\right) \boldsymbol{v}_{3}
$$

3. Compute the determinant of:

$$
M=\left[\begin{array}{cccc}
0 & 0 & 2 & -1 \\
0 & 0 & -4 & -2 \\
1 & 3 & -1 & 2 \\
-1 & 3 & 0 & 5
\end{array}\right]
$$

by using row operations.

Solution: We first swap the first and third rows, and then the second and fourth rows to arrive at the matrix:

$$
M^{\prime}=\left[\begin{array}{cccc}
1 & 3 & -1 & 2 \\
-1 & 3 & 0 & 5 \\
0 & 0 & 2 & -1 \\
0 & 0 & -4 & -2
\end{array}\right]
$$

Therefore $\operatorname{det} M=(-1)^{2} \operatorname{det} M^{\prime}=\operatorname{det} M^{\prime}$. We now perform elimination operations on M^{\prime} :

$$
\left[\begin{array}{cccc}
1 & 3 & -1 & 2 \\
-1 & 3 & 0 & 5 \\
0 & 0 & 2 & -1 \\
0 & 0 & -4 & -2
\end{array}\right] \xrightarrow{r_{2}+r_{1}}\left[\begin{array}{cccc}
1 & 3 & -1 & 2 \\
0 & 6 & -1 & 7 \\
0 & 0 & 2 & -1 \\
0 & 0 & -4 & -2
\end{array}\right] \xrightarrow{r_{4}+2 r_{3}}\left[\begin{array}{cccc}
1 & 3 & -1 & 2 \\
0 & 6 & -1 & 7 \\
0 & 0 & 2 & -1 \\
0 & 0 & 0 & -4
\end{array}\right]
$$

which shows $\operatorname{det}\left(M^{\prime}\right)=1 \cdot 6 \cdot 2 \cdot(-4)=-48$. Thus $\operatorname{det} M=-48$.

Note that:

$$
\operatorname{det} M=\operatorname{det}\left[\begin{array}{cc}
1 & 3 \\
-1 & 3
\end{array}\right] \cdot \operatorname{det}\left[\begin{array}{cc}
2 & -1 \\
-4 & -2
\end{array}\right]=6 \cdot(-8)=-48
$$

Indeed, it is true in general (and can be seen by row operations) that if a matrix is written in block form:

$$
\left[\begin{array}{c|c}
A & B \\
\hline 0 & C
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{c|c}
A & 0 \\
\hline B & C
\end{array}\right]
$$

(with A and C being square blocks) then its determinant is $\operatorname{det}(A) \operatorname{det}(C)$.

